Pushkin Kachroo, Ph.D., P.E.

ECG 795 Optimization: Theory and Applications
Fall 2009: 3 credits
The course covers optimization theory and methods. The theory part develops using and teaching functional analysis �the study of linear vector spaces �to impose simple, intuitive interpretations on complex, finite and infinite-dimensional problems. The course starts from simple optimization problems, unconstrained and constrained, linear and nonlinear, and then proceeds to optimization when systems are time varying. Optimization software is also covered.
Prerequisites: Graduate Standing. 3 credits.
Grading
Tests/HW: 35%; Projects: 30%; Final: 30%; Attendance: 5%
Guaranteed Grades: A- ( > 90%); B- ( > 80%); C- ( > 70%);
Lecture Room
SEB 1240
Lecture Time
10:00 PM-11:15 PM MW
Office Hours
Location: SEB3218 Time: 11:15 A.M. to 01:00 P.M. MW
Textbook
Schaum's Outline of Operations Research,2nd Ed
by Richard Bronson and Govindasami Naadimuthu
Mcgraw Hill 1997
Optimal Control Theory: An Introduction
by Donald E. Kirk,
Dover 2004
Optimization by Vector Space Methods
David G. Luenberger,
Wiley 1997
Topics
Introduction and Overview ; Linear Programming (Standard Form)
Duality ; Integer Programming
Unconstrained Single-variable Nonlinear Optimization ; Unconstrained Multivariable Nonlinear Optimization
Lagrange Multipliers ; Kuhn Tucker Conditions
Finite Dimensional Optimization ; Dynamic Programming on Graphs
Hamilton Jacobi PDE ; Calculus of Variations
Euler-Lagrange equation- single variable ; Euler-Lagrange equation- multiple variables
Euler-Lagrange equation-higher derivatives ; Dynamic Programming, Hamilton Jacobi
Euler-Lagrange equation-Some Boundary Conditions ; Euler-Lagrange equation-with Constraints
Euler-Lagrange equation-General Boundary Conditions ; Hamiltonian Dynamics, Pontryagin's Principle
Infinite Dimensional Optimization ; Numerical Methods for Infinite Dimensional Optimization
Vector (Linear) Spaces ; Normed Linear Spaces
Hilbert Space ; Least Squares Estimation
Dual Spaces ; Linear Operators and Adjoints
Optimization of Functionals ; Global Theory of Constrained Optimization
Local Theory of Constrained Optimization ; Iterative Methods
Test Score Distribution
Test 1:avg. 22.81/30
Test 2:avg. 26.88/30
Test 3:avg. 24.59/30
Test 4:avg. 25.38/30
Test 5:avg. 25.94/30
Test 5:avg. 19.19/25
Course Calendar
Date
Day
Topics
Textbook-Sections/Notes
Aug
24
M
Introduction to Mathematical Programming
Sch. Ch1
W
Introduction to Mathematical Programming
Sch Ch1; Solved Problems: 1.1-1.4,1.10,1.11
Aug
31
M
Linear Programming
W
Linear Programming
Sch Ch2; Solved Problems: 2.1-2.21
Sep
7
M
Labor Day
Labor Day
W
 
Sep
14
M
Duals, Sensitivity Analysis, and Integer Programming
Sch 3.1,2,3,8,;4.1,2,3,8,9; examples 6.1,2,3, ex. 6.1,2
W
Nonlinear Unconstrained Optimization
 
Sep
21
M
 
W
Study: Sch:Ch10: Thm10.1,2,3,4,5; Ch11: All Thms, examples;
Steepest Ascent, Newton-Raphson method; 11.1,2,7
Ch12, Thm12.1, Lagrange, Newton-Raphson, Kuhn-Tucker, 12.1,2,5
Examples done in class
Sep
28
M
W
Introduction to Optimal Control>
Kirk: Ch1, 2, 3.1-4
Oct
5
M
Dynamic Programming
Kirk: Ch3.1-3.4
W
Hamilton-Jacobi
Kirk: Ch3.11,3.12
Oct
12
M
Calculus of Variations: Fundamentals
Kirk: Ch4.1
W
Euler-Lagrange
Kirk: Ch4.2
Oct
19
M
Midsemester
W
Unconstrained Optimal Control
Kirk: Ch5.1
Oct
26
M
Pontryagin's Principle, numerical methods
Kirk: Ch5.3, Ch6
W
Linear Spaces
Luenberger:Ch1,2
Nov
2
M
 
W
Vector (Linear) Spaces Examples
Luenberger:Ch2
Nov
9
M
Linear Varieties
 
W
Convex Sets
 
Nov
16
M
Normed and Banach Spaces
 
W
Weirstrass Theorem
 
Nov
23
M
Hilbert Space, Projection Theorem
Luenberger:Ch3
W
Least Squares, Operators, and Pseudoinverse
Luenberger:Ch4, Ch6
Nov
30
M
 
Review
W
Review
Dec
7
M
Exam Week
W
 
Exam Week
University of Nevada, Las Vegas