

Page 1 of 1

Student Name: .

HW#1 CVL851: Special Topics in Transportation, Spring 2023

Problem 1 (10 Points) State Peano's axioms. (**Note**: Use wikipedia or any textbook, or any other resource for proper axiomatic definitions)

Problem 2 (10 Points)

- Prove that the cardinality of the set of natural numbers N, i.e. {0, 1, 2, · · · , } and the set of positive integers Z⁺, i.e. {1, 2, · · · , } is the same.
- 2. Give a set whose cardinality is higher than the cardinality of the set of real numbers \mathbb{R} .

Problem 3 (10 Points) Prove that the set of rational numbers \mathbb{Q} is countable.

Problem 4 (10 Points) Prove that the interval $[0,1] \in \mathbb{R}$ is uncountable.

Problem 5 (15 Points) Define a groupoid, a semigroup, a monoid, a group, a ring, a field, and a vector space. (**Note**: Use wikipedia or any textbook, or any other resource for proper axiomatic definitions).

Problem 6 (5 Points) State the fundamental theorem of algebra.

Problem 7 (10 Points) In a complex field what is the multiplicative inverse of 2+i3, and in quarternion field, what is the product of (2+3i)(1+i-4j+5k)?

Problem 8 (10 Points) Prove that the set $\mathbb{Z}_3 = \{0, 1, 2\}$ with modulo 3 arithmetic is a ring. Modulo arithmetic is similar to *clock* arithmetic which is modulo 12 where 12 is same as 0, and therefore 10+3 which would be 13 is same as 13 - 12 = 1.

Problem 9 (10 Points) Prove that the set polynomials with coefficients in \mathbb{R} is a vector space over the real field \mathbb{R} .

Problem 10 (10 Points) Draw a unit circle for \mathbb{R}^2 using ℓ_2 norm, ℓ_1 norm, and ℓ_{∞} norm, on the same plot.

