CVL 851: Assignment #2 SPECIAL TOPICS IN TRANSPORTATION

Due on Monday, February 3^{rd} , 2023

Dr. Pushkin Kachroo

Pushkin Kachroo

February 4, 2023

Page 2 of 9

Pushkin Kachroo

HW#2: Solution	CVL851:	Special	Topics i	in Transportation	, Spring 2023
----------------	---------	---------	----------	-------------------	---------------

Contents

Problem 1	3
Problem 2	4
Problem 3	5
Problem 4	6
Problem 5	7
Problem 6	8
Problem 7	9

HW#2: Solution CVL851: Special Topics in Transportation, Spring 2023

Problem 1. Give the definitions for Banach spaces and Hilbert spaces, and one example of each.

Solution:

Banach Space A normed vector space which is a complete metric space in the metric induced by the norm is called a Banach space.

Hilbert Space An inner product space which is a complete metric space in the metric induced by the norm, which in turn is induced by the inner product, is called a Hilbert space.

HW#2: Solution CVL851: Special Topics in Transportation, Spring 2023

- **Problem 2.** 1. Find the angle between the vectors $x_1 = \begin{bmatrix} 1 & 3 & -4 & 0 \end{bmatrix}'$, and $x_1 = \begin{bmatrix} 2 & 1 & 4 & -1 \end{bmatrix}'$ using the ℓ_2 Hilbert space on \mathbb{R}^4 .
 - 2. Find the angle between the functions $f_1(x) = x$, and $f_2(x) = x^2$ using the L_2 Hilbert space defined on $x \in [0, 1]$. Are they orthogonal?
 - 3. Find the angle between the functions $f_1(\theta) = \sin \theta$, and $f_2(x) = \cos \theta$ using the L_2 Hilbert space defined on $\theta \in [0, 2\pi]$. Are they orthogonal?
 - 4. Find the norm $||(x_n)||$ of the sequence $x_n = 1/\sqrt{2^n}$, $n = 1, 2, \cdots$ in ℓ_2 . Notice that this is an infinite sequence, ad hence, just use infinite sum for the norm extending the idea of ℓ_2 from \mathbb{R}^n .

Solution:

1.

$$\cos \alpha = \frac{\langle x_1, x_2 \rangle}{\|x_1\| \|x_2\|} = \frac{2+3-16}{\sqrt{1+9+16}\sqrt{4+1+16+1}}$$

$$\alpha = 117.38^{\circ}$$

2.

$$\cos \alpha = \frac{\langle f_1, f_2 \rangle}{\|f_1\| \|f_2\|} = \frac{\int_0^1 f_1(x) f_2(x) dx}{\sqrt{\int_0^1 f_1^2(x) dx} \sqrt{\int_0^1 f_2^2(x) dx}} = \frac{\int_0^1 x^3 dx}{\sqrt{\int_0^1 x^2 dx} \sqrt{\int_0^1 x^4 dx}}$$
$$= \frac{1/4}{\sqrt{1/3}\sqrt{1/5}} = \frac{\sqrt{15}}{4}$$
$$\alpha = 14.478^\circ$$

3.

4.

$$\cos \alpha = \frac{\langle f_1, f_2 \rangle}{\|f_1\| \|f_2\|} = \frac{\int_0^{2\pi} f_1(\theta) f_2(\theta) d\theta}{\sqrt{\int_0^{2\pi} f_2^2(\theta) d\theta}} \sqrt{\int_0^{2\pi} f_2^2(\theta) d\theta} = \frac{\int_0^{2\pi} \sin \theta \cos \theta d\theta}{\sqrt{\int_0^{2\pi} f_1^2(\theta) d\theta} \sqrt{\int_0^{2\pi} f_2^2(\theta) d\theta}}$$
$$= \frac{\int_0^{2\pi} \sin 2\theta d\theta}{2\sqrt{\int_0^{2\pi} f_1^2(\theta) d\theta} \sqrt{\int_0^{2\pi} f_2^2(\theta) d\theta}} = 0$$
$$\alpha = 90^\circ, \text{ perpendicular}$$
$$\|(x_n)\|_2 = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots = 1$$

Page 5 of 9

Pushkin Kachroo

HW#2: Solution CVL851: Special Topics in Transportation, Spring 2023

Problem 3. 1. Find the maximum value of the function f(x) = x on (0, 1).

2. Find the maximum value of the function

$$f(x) = \begin{cases} x, & \text{if } x \in [0, 1) \\ 0.5, & \text{if } x = 1 \end{cases}$$

 $on \ [0,1].$

- 3. Find the maximum value of the function f(x) = x on \mathbb{R} .
- 4. Find the maximum value of the function f(x) = x on [0, 1].

Solution:

- 1. Does not exist
- 2. Does not exist
- 3. Does not exist
- 4. 1

Page 6 of 9

Pushkin Kachroo

HW#2: Solution CVL851: Special Topics in Transportation, Spring 2023

Problem 4. Consider the set $X = \{a, b, c, d, e\}$, and the following collection of subsets. Which ones are topologies and which ones are not. Show why.

- 1. $\mathcal{T}_1 = \{\phi, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}, X\}$
- 2. $\mathcal{T}_2 = \{\phi, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$
- 3. $\mathcal{T}_3 = \{\phi, \{a\}, \{c, d\}, \{a, c, d\}, \{a, b, d, e\}, X\}$

Solution:

- 1. T_1 is a topology as it satisfies all the axioms of being a topology.
- 2. \mathcal{T}_2 is not a topology as $\{a, c, d\} \cup \{b, c, d\} = \{a, b, c, d\} \notin \mathcal{T}_2$
- 3. \mathcal{T}_3 is not a topology as $\{a, c, d\} \cap \{a, b, d, e\} = \{a, d\} \notin \mathcal{T}_3$

HW#2: Solution CVL851: Special Topics in Transportation, Spring 2023

Problem 5. The set $X_1 = \{a, b, c\}$ has the topology $\mathcal{T}_1 = \{\phi, \{a\}, \{a, b\}, X_1\}$. Similarly, the set $X_2 = \{0, 1\}$ has the topology $\mathcal{T}_2 = \{\phi, \{0\}, \{1\}, X_2\}$. Is the function $f : X_1 \to X_2$, where f(a) = f(b) = 0 and f(c) = 1 continuous? Show why or why not.

Solution:

A function is continuous if the inverse of every open set in the codomain topology is open in the domain topology.

- $f^{-1}(\phi) = \phi \in \mathcal{T}_1$
- $f^{-1}(X_2) = X_1 \in \mathcal{T}_1$
- $f^{-1}(\{0\}) = \{a, b\} \in \mathcal{T}_1$
- $f^{-1}(\{1\}) = \{c\} \notin \mathcal{T}_1$

Because of $f^{-1}(\{1\}) = \{c\} \notin \mathcal{T}_1$, f is not continuous.

HW#2: Solution CVL851: Special Topics in Transportation, Spring 2023

Problem 6. The set $X = \{a, b, c\}$ has the topology $\mathcal{T} = \{\phi, \{a\}, \{a, b\}, X\}$. What is the limit of the following sequences? Give reason why for each.

- 1. $x = (a, a, b, b, b, b, b, b, \cdots, b, b, b, \cdots)$, that is, all be after first two as.
- 2. $x = (b, b, a, a, a, a, a, a, a, \cdots, a, a, a, \cdots)$, that is, all as after first two bs.
- 3. $x = (a, b, a, b, a, b, \cdots)$, that is, alternate as and bs.

Solution:

- 1. $\lim_{n\to\infty} x_n = b$, as any subset that contains b i.e. X and $\{a, b\}$ contain all but finitely many members of the sequence. In fact both contain all the members. $\lim_{n\to\infty} x_n = c$, as the only neighborhood of c is X which contains all the members of the sequence.
- 2. $\lim_{n\to\infty} x_n = a$, as any subset that contains a i.e. X, $\{a\}$, and $\{a, b\}$ contain all but finitely many members of the sequence. $\lim_{n\to\infty} x_n = c$, as the only neighborhood of c is X which contains all the members of the sequence.
- 3. $\lim_{n\to\infty} x_n = b$, as any subset that contains b i.e. X and $\{a, b\}$ contain all but finitely many members of the sequence. In fact both contain all the members. $\lim_{n\to\infty} x_n = c$, as the only neighborhood of c is X which contains all the members of the sequence.

HW#2: Solution CVL851: Special Topics in Transportation, Spring 2023

Problem 7. What is a compact set in a metric space, and state the Weirstrass theorem for optimization. Solution:

Compact Set A set is compact if every sequence in it has a convergent subsequence.

Weirstrass theorem A constinuous function on a compact set to R achieves its maximum as well as its minimum.
