CVL 851: Minor Exam #1 SPECIAL TOPICS IN TRANSPORTATION

Due on Monday, February $6^{th},\,2023$

Dr. Pushkin Kachroo

Pushkin Kachroo

February 15, 2023

Page 2 of 6

Pushkin Kachroo

Minor#1: Solution CVL851: Special Topics in Transportation, Spring 2023

Contents

Problem 1	3
Problem 2	4
Problem 3	5
Problem 4	6

Page 3 of 6

Pushkin Kachroo

Minor#1: Solution CVL851: Special Topics in Transportation, Spring 2023

Problem 1. Given the following table for a groupoid $\{\Omega, \odot\}$.

\odot	a	b	с
a	b	c	a
b	с	a	b
С	a	b	c

- 1. Find the identity element of the groupoid. c
- 2. Fill the following table

$(a \odot b) \odot c =$	<mark>c</mark>	$a \odot (b \odot c) =$	<mark>c</mark>
$(a \odot c) \odot b =$	<mark>c</mark>	$a\odot (c\odot b) =$	<mark>c</mark>
$(b \odot c) \odot a =$	<mark>c</mark>	$b \odot (c \odot a) =$	<mark>c</mark>
$(b \odot a) \odot c =$	<mark>c</mark>	$b \odot (a \odot c) =$	<mark>c</mark>
$(c \odot a) \odot b =$	<mark>c</mark>	$c \odot (a \odot b) =$	<mark>c</mark>
$(c \odot b) \odot a =$	<mark>c</mark>	$c \odot (b \odot a) =$	<mark>c</mark>

Is this groupoid a semigroup? yes, being associative

3. Is this groupoid a monoid? yes, because has the identity element

4. Fill the following table

$a \odot b =$	$\boxed{\begin{array}{c} c \\ c \end{array}} b \odot a$	= <mark>c</mark>
$a \odot c =$	$\boxed{a} c \odot a$	= <mark>a</mark>
$b \odot c =$	$b c \odot b$	= <mark>b</mark>

Is this groupoid abelian? yes, being associative

5. Find the inverses of a, b, and c. Is this groupoid a group? $= b, b^{-1} = a, c^{-1} = c$ being a monoid with inverses yes,

Pushkin Kachroo

Minor#1: Solution CVL851: Special Topics in Transportation, Spring 2023

- **Problem 2.** 1. Find the angle between the vectors $x_1 = \begin{bmatrix} 1 & 0 & -1 & 0 \end{bmatrix}'$, and $x_1 = \begin{bmatrix} -1 & 1 & 1 & -1 \end{bmatrix}'$ using the ℓ_2 Hilbert space on \mathbb{R}^4 .
 - 2. Find the angle between the functions $f_1(\theta) = \sin \theta$, and $f_2(\theta) = \cos \theta$ using the L_2 Hilbert space defined on $\theta \in [0, \pi]$. Are they orthogonal?
 - 3. Find the L_2 limit of the series of functions $f_n(x) = x^n$ as $n \to \infty$ defined on [0, 1].
 - 4. Find the norm $||(x_n)||$ of the sequence $x_n = 1/\sqrt{3^n}$, $n = 1, 2, \cdots$ in ℓ_2 . Notice that this is an infinite sequence, and hence, just use infinite sum for the norm extending the idea of ℓ_2 from \mathbb{R}^n .

Solution:

1.

$$\theta = \arccos\left(\frac{\langle x_1, x_2 \rangle}{\|x_1\| \|x_2\|}\right) = \arccos\left(\frac{-2}{\sqrt{2}\sqrt{2}}\right) = \arccos(-1) = \boxed{\pi \text{ radians}}$$
(1)

2.

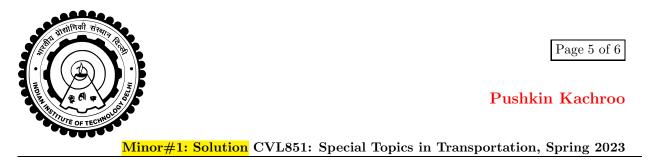
$$\theta = \arccos\left(\frac{\langle f_1, f_2 \rangle}{\|f_1\|\|f_2\|}\right) = \arccos\left(\frac{\int_0^\pi \sin\theta\cos\theta d\theta}{\|f_1\|\|f_2\|}\right)$$
$$= \arccos\left(\frac{\int_0^\pi \sin 2\theta d\theta}{2\|f_1\|\|f_2\|}\right) = \arccos(0) = \pi/2 \text{ radians}$$
(2)

yes, they are orthogonal

3. $f_n(x) = x^n \to 0$

4.

$$\sum x_n = \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots = \frac{1/3}{1 - (1/3)} = \boxed{\frac{1}{2}}$$
(3)



Problem 3. The set $X_1 = \{a, b, c\}$ has the topology $\mathcal{T}_1 = \{\phi, \{a\}, \{a, b\}, X_1\}$. Similarly, the set $X_2 = \{0, 1\}$ has the topology $\mathcal{T}_2 = \{\phi, \{0\}, \{1\}, X_2\}$. Is the function $f : X_1 \to X_2$, where f(a) = 0 and f(b) = f(c) = 1 continuous? Show why or why not.

Solution:

 $f^{-1}(1) = \{b, c\} \notin \mathcal{T}_1 \implies f \text{ is not continuous.}$

Page 6 of 6

Pushkin Kachroo

Minor#1: Solution CVL851: Special Topics in Transportation, Spring 2023

Problem 4. The set $X = \{a, b, c\}$ has the topology $\mathcal{T} = \{\phi, \{a\}, \{b, c\}, X\}$. What is the limit of the following sequences? Give reason why for each.

- 1. $x = (a, a, b, b, b, b, b, b, \cdots, b, b, b, \cdots)$, that is, all be after first two as.
- 2. $x = (b, b, a, a, a, a, a, a, a, \cdots, a, a, a, \cdots)$, that is, all as after first two bs.
- 3. $x = (a, b, a, b, a, b, \cdots)$, that is, alternate as and bs.

Solution:

- 1. $x \to b$ and also $x \to c$. This is because any open set containing c also contains b.
- 2. $x \rightarrow a$
- 3. This sequence does not converge.

