

**Problem** 1 (10 Points) **Derive** the laplace transform of the following signals:

- 1.  $x(t) = e^{-at}u(t)$ , *a* real.
- 2. Dirac distribution  $\delta(t)$
- 3. unit step function u(t)

Problem 2 (10 Points) Using tables or directly, find the Laplace transform of the following:

1.  $x(t) = u(t - t_0)$ 2.  $x(t) = e^{-2t}[u(t) - u(t - 5)]$ 3.  $x(t) = \delta'(t)$ 

**Problem 3** (10 Points) Find the inverse Laplace transform of:

$$X(s) = \frac{s^2 + 2s + 5}{(s+3)(s+5)^2}, \quad \operatorname{Re}(s) > -3$$

**Problem** 4 (10 Points) Using Unilateral Laplace transform solve the following differential equation:

$$\frac{dx(t)}{dt} + ax(t) = 0, \quad x(0) = x_0$$

| Property             | Signal                              | Transform                 | ROC                                         |
|----------------------|-------------------------------------|---------------------------|---------------------------------------------|
|                      | x(t)                                | X(s)                      | R                                           |
|                      | $x_{l}(t)$                          | $X_1(s)$                  | $R_1$                                       |
|                      | $x_2(t)$                            | $X_2(s)$                  | $R_2$                                       |
| Linearity            | $a_1 x_1(t) + a_2 x_2(t)$           | $a_1 X_1(s) + a_2 X_2(s)$ | $R' \supset R_1 \cap R_2$                   |
| Time shifting        | $x(t-t_0)$                          | $e^{-st_0}X(s)$           | R' = R                                      |
| Shifting in s        | $e^{s_0t}x(t)$                      | $X(s-s_0)$                | $R' = R + \operatorname{Re}(s_0)$           |
| Time scaling         | x(at)                               | $\frac{1}{ a }X(s)$       | R' = aR                                     |
| Time reversal        | x(-t)                               | X(-s)                     | R' = -R                                     |
| Differentiation in t | $\frac{dx(t)}{dt}$                  | sX(s)                     | $R' \supset R$                              |
| Differentiation in s | -tx(t)                              | $\frac{dX(s)}{ds}$        | R' = R                                      |
| Integration          | $\int_{-\infty}^{t} x(\tau)  d\tau$ | $\frac{1}{s}X(s)$         | $R'\supset R\cap\{\operatorname{Re}(s)>0\}$ |
| Convolution          | $x_{1}(t) * x_{2}(t)$               | $X_1(s)X_2(s)$            | $R' \supset R_1 \cap R_2$                   |