Software Project #2

ECE 1574

Fall 2005
Background:
One of the great advantages software applications provide us is the ability to simulate
real-world situations that would otherwise be difficult or impossible to replicate. One
such area is in the field of human behavior. It can be extremely difficult to carry out real-
world experiments on human behavior because humans behave differently when they
know they are being observed.

In this project you will discover how software might be used to aid in such studies by
constructing a (very) simplified program for simulating the evacuation of a number of
people from a room. For this first iteration you will develop a procedural application to
accomplish this, which means you will only use functions and no classes.

In this iteration of this project we will increase the complexity of the rooms, allowing for
walls and exits to exist in places other than the edges of the room.

Specifications:

(1)The room will be represented by a two-dimensional matrix, one cell of which will
be an exit marked by an 'E' in its spot in the input file.

(2)The size of the room, location of the exit, the locations of any walls, and the initial
locations of the people in the room will be read in from a file. Walls within the
room will be marked in the input file by a 'W'.

(3)Your program will need to maintain its own “clock.” One person will change
position per clock tic. The person to move will be determined by progressing
through the “room” from left to right, top to bottom. If a cell is empty, you must
progress to the next one until you find one that is occupied. The clock must start at
0 and should be incremented after a person's position is updated.

(4)A person can move to any of the 8 cells adjacent to that person's current position, or
not move. A person can only be moved once per “round” (complete traversal of the
room).

(5)Two people cannot occupy the same cell.

(6)Each person should endeavor to move to the adjacent empty cell closest to the exit.
If two cells are tied for distance to the exit, then choose the first one that is found by
moving counter-clockwise around the person to be moved, starting from the cell to
the person's right (for example, if down-right is closest and occupied, and down and
right are both tied for next closest, then choose right).

(7)A person should not move further away from the exit than that person's current
position. A person cannot move through a “wall” (either the edge of the room or a
cell in the matrix marked by a "W'). This may mean that a person is unable to move.

(8)If the person is moved into the cell marked as the exit, that person leaves the room
immediately(is removed from further consideration). This means that if two people
are one square away from the exit when the first of the two is reached, both will be
able to leave when they are moved.

(9)Each time all cells have been traversed (each person considered for movement),
your program must output the room, indicating which cells contain a person, and



the current clock tic.
(10)Execution ends when all people have left the room.

Grading:
80 % for program functionality
20 % for pseudocode, and program comments.

Sample Input:

5 5 //mumber of rows and columns, respectively
01001

10110

001WO

0IWOE

10010

Sample Output:

Time: 9

00100
01101
001WI1
OOWIE
01000

Time: 17

00000
00111
011WO
OOWOE
00100

Time: 23

00000
00110
000WI1
0IWIE
00010

Time: 29

00000
00001
001WO
OOWOE



00100

Time: 32

00000
00000
000WI
OOWIE
00010

Time: 35

00000
00000
000WO
O0OWOE
00000



