ECE 6444 Optimization Theory: Finite and Infinite Dimensional Systems

(Advanced Topics in Controls): Fall 2006: 3 credits: CRN 96164

The course will cover functional analysis —the study of linear vector spaces —to impose simple, intuitive interpretations on complex, infinite-dimensional problems. The early lectures will offer an introduction to functional analysis, with applications to optimization. topics addressed include linear space, Hilbert space, least-squares estimation, dual spaces, and linear operators and adjoints. Later lectures will deal explicitly with optimization theory, discussing: (1) Optimization of functionals , (2) Global theory of constrained optimization , (3) Local theory of constrained optimization, (4) Iterative methods of optimization.

Taught by

pushkin@vt.edu

Listserv

ece6444_96164@listserv.vt.edu

Grading

Tests/HW: 65%; Final: 30%; Attendance: 5% Guaranteed Grades: A- ( > 90%); B- ( > 80%); C- ( > 70%);

Lecture Room

Whit 349

Lecture Time

09:05AM - 09:55AM (M, W)

Office Hours

Location: 345 Durham; 10:00 A.M. to 12:00 Noon (M,W,F)

Textbook

Optimization by Vector Space Methods

David G. Luenberger

Recommended

Schaum's Outline of Operations Research

Optimal Control Theory: An Introduction  by Donald E. Kirk

T.A.

 

Office Hours

 

Schedule

Dates

Days

Topics

Textbook

Aug 21

M

Introduction and Overview

 

W

Linear Programming (Standard Form)

Ch 1(p1.2,1.3,1.4), Ch2(p2.1,2.2,2.5,2.7,2.8), Chapter 3 (p3.1) (Schaum)

F

Duality

Ch 4 (P4.1) (Schaum)

Aug 28

M

Integer Programming

Ch 6 (Ex. 6.1, Ex. 6.2) (Schaum)

W

Unconstrained Single-variable Nonlinear Optimization

Ch 10 (page 169, Theorem 10.1, 10.2, 10.3, p10.14, 10.15, 10.17) (Schaum)

F

Unconstrained Multivariable Nonlinear Optimization

Ch 11 (page 182, 183, Newton Raphson method, Theorem 11.5,11.6) (Schaum)

Sept 4

M

Lagrange Multipliers

Ch11 (p. 11.1, 11.2, 11.13), Ch 12 (page 198,199,200) (Schaum)

W

Kuhn Tucker Conditions

Ch 12 (p12.1,12.2,12.5,12.10) (Schaum)

F

Review

 

Sept 11

M

Finite Dimensional Optimization (Schaum)

Test 1 (Schaum)

W

Dynamic Programming on Graphs

Chapter 1, Chapter 2, Chapter 3 (Kirk)

F

Hamilton Jacobi PDE

Chapter 3 (Kirk)

Sept 18

M

Calculus of Variations

Chapter 4 (Kirk)

W

Euler-Lagrange equation- single variable

Chapter 4 (Kirk)

F

Euler-Lagrange equation- multiple variables

Chapter 4 (Kirk)

Sept 25

M

Euler-Lagrange equation-higher derivatives

Chapter 4 (Kirk)

W

Dynamic Programming, Hamilton Jacobi

Test 2 (Kirk)

F

Euler-Lagrange equation-Some Boundary Conditions

Chapter 4 (Kirk)

Oct 2

M

Euler-Lagrange equation-with Constraints

Chapter 4 (Kirk)

W

Euler-Lagrange equation-General Boundary Conditions

Chapter 4 (Kirk)

F

Hamiltonian Dynamics, Pontryagin’s Principle

Chapter 5 (Kirk)

Oct 9

M

 Fall Break

 

W

Infinite Dimensional Optimization (Kirk)

Test 3 (Kirk)

F

Numerical Methods for Infinite Dimensional Optimization

Chapter 6 (Kirk)

Oct 16

M

Main Principles

Chapter 1(Luenberger)

W

Vector (Linear) Spaces

Chapter 2 (Luenberger)

F

Vector (Linear) Spaces

Chapter 2 (Luenberger)

Oct 23

M

Vector (Linear) Spaces

Chapter 2 (Luenberger)

W

Normed Linear Spaces

Chapter 2 (Luenberger)

F

Normed Linear Spaces

Chapter 2 (Luenberger)

Oct 30

M

Hilbert Space

Chapter 3 (Luenberger)

W

Hilbert Space

Chapter 3 (Luenberger)

F

 

Test 4 (Due)

Nov 6

M

Hilbert Space

Chapter 3 (Luenberger)

W

Least Squares Estimation

Chapter 4 (Luenberger)

F

Dual Spaces

Chapter 5 (Luenberger)

Nov 13

M

Dual Spaces

Chapter 5 (Luenberger)

W

Linear Operators and Adjoints

Chapter 6 (Luenberger)

F

Linear Operators and Adjoints

Chapter 6 (Luenberger)

Nov 20

M

 Thanksgiving Break

 

W

 Thanksgiving Break

 

F

 Thanksgiving Break

 

Nov 27

M

Optimization of Functionals

Chapter 7 (Luenberger)

Test 5 (Due)

W

Global Theory of Constrained Optimization

Chapter 8 (Luenberger)

F

Local Theory of Constrained Optimization

Chapter 9 (Luenberger)

Dec 4

M

Iterative Methods

Chapter 10 (Luenberger)

Test 6 (Due)

W

 

 Classes End

F

10:05 A.M. – 12:05 P.M.

Final Exam (Comprehensive)

Major Measurable Learning Objectives:

Having successfully completed this course, the student will be able to:

Formulate the mathematical model for finite and infinite dimensional optimization problems.

• Apply the necessary and/or sufficient conditions to solve various optimization problems.