

**Problem 1** (10 Points) A DC source is applied at t = 0 as shown in the figure to a lossless line. Given that  $R_L = 3R_0$ , and  $R_g = 2R_0$ .

- 1. Find out what voltages will be produced on the line at different times, and what will be the final voltage as  $t \to \infty$ .
- 2. If the inductance per meter is L, capacitance C, then how much time will a pulse take to go from z = 0 to  $z = \ell$  on this lossless line?



**Problem** 2 (10 Points) (1) Use the Smith chart to find the input impedance of a 50 $\Omega$  lossless line that is 0.1 wavelength long and terminated at a short circuit. (2) A lossless transmission line of length 0.434 $\lambda$  and characteristics impedance 100 $\Omega$  is terminated in an impedance of 260 + *j*180 $\Omega$ . Find the voltage reflection coefficient, the standing wave ratio, and the input impedance.

