

- **Problem** 1 (10 Points)
- 1. Prove that any set of outer measure zero is measurable.
- 2. Prove that there are disjoint sets of real numbers A and B for which  $m^*(A \cup B) < m^*(A) + m^*(B)$ .

**Problem** 2 (10 Points)

- 1. Prove that the Cantor-Lebesgue function is not absolutely continuous.
- 2. Prove the existence of a Lebesgue measurable set which is not Borel.

**Problem 3** (10 Points) Show that if f is a bounded function on E that belongs to  $L^{p_1}(E)$ , then it belongs to  $L^{p_2}(E)$  for  $p_2 > p_1$ .

**Problem** 4 (10 Points) Is the space  $L^{\infty}$  separable? Prove your answer.

**Problem 5** (10 Points) Show that strong  $L^p$  convergence imples weak  $L^p$  convergence, and also that the (weak) limit of a weak convergent sequence is unique.

**Problem 6** (10 Points) Let E be the set of finite measure and  $\delta > 0$ . Then show that E is the disjoint union of a finite collection of sets, each of which has measure less than  $\delta$ .