|
|||||||||||||||
ECE 5554: Computer
Vision Systems
[Fall, 2005]; Dr. Pushkin Kachroo; CRN: 95427;
Credits: 3
|
|||||||||||||||
Analysis of digital images and
three-dimensional scenes. Image acquisition, representation of two- and
three-dimensional shapes, visual cues for range estimation. Image filtering and
histogram-based analysis for image enhancement, noise suppression, edge
detection, region detection, and image segmentation. Introduction to such
topics as visual texture, stereo vision, structured-light ranging, and motion
analysis. |
|||||||||||||||
Taught by |
231-2976 |
||||||||||||||
Listserve |
|||||||||||||||
Grading |
HW/Projects: 30%; Tests/Final: 65%; Attendance: 5% Guaranteed Grades: A- ( > 90%); B- ( > 80%); C- ( > 70%); |
||||||||||||||
Lecture Room |
|
||||||||||||||
Lecture Time |
|
||||||||||||||
Office Hours |
Location:
345 |
||||||||||||||
Textbook |
|||||||||||||||
T.A. |
T.A.;
Email:ta@vt.edu |
||||||||||||||
Software |
Any C/C++ compiler (Visual C++
preferred) |
||||||||||||||
Schedule |
|||||||||||||||
Dates |
Days |
Topics |
|
||||||||||||
Aug 22 |
T |
||||||||||||||
Aug29 |
T |
|
|||||||||||||
Sep05 |
T |
||||||||||||||
Sep12 |
T |
|
|||||||||||||
Sep19 |
T |
|
|||||||||||||
Sep26 |
T |
||||||||||||||
Oct03 |
T |
|
|||||||||||||
Oct10 |
T |
||||||||||||||
Oct17 |
T |
|
|||||||||||||
Oct24 |
T |
|
|||||||||||||
Oct31 |
T |
No class |
|
||||||||||||
Nov07 |
T |
linelabel, color |
|
||||||||||||
Nov14 |
T |
Shape/shading |
|
||||||||||||
Nov21 |
T |
Thanksgiving
Break |
No Class |
||||||||||||
Nov28 |
T |
Test |
|||||||||||||
Dec05 |
T |
Class Presentations |
Final Reports
Due |
||||||||||||
15th |
|
Final Exam |
|||||||||||||
Major Measurable Learning Objectives:
Having successfully completed
this course, the student will be able to:
(1) select imaging devices and
illumination sources for a given application;
(2) design and implement
algorithms that perform edge detection, noise suppression,
image thresholding, histogram
analysis, region detection, and region labeling;
(3) compute edge and region
properties that can be used for higher-level analysis;
(4) analyze problems that
involve perspective projection or orthographic projection;
(5) assess the performance of
vision-based range- and shape-estimation systems.